Construction of regulatory networks using expression time-series data of a genotyped population.

نویسندگان

  • Ka Yee Yeung
  • Kenneth M Dombek
  • Kenneth Lo
  • John E Mittler
  • Jun Zhu
  • Eric E Schadt
  • Roger E Bumgarner
  • Adrian E Raftery
چکیده

The inference of regulatory and biochemical networks from large-scale genomics data is a basic problem in molecular biology. The goal is to generate testable hypotheses of gene-to-gene influences and subsequently to design bench experiments to confirm these network predictions. Coexpression of genes in large-scale gene-expression data implies coregulation and potential gene-gene interactions, but provide little information about the direction of influences. Here, we use both time-series data and genetics data to infer directionality of edges in regulatory networks: time-series data contain information about the chronological order of regulatory events and genetics data allow us to map DNA variations to variations at the RNA level. We generate microarray data measuring time-dependent gene-expression levels in 95 genotyped yeast segregants subjected to a drug perturbation. We develop a Bayesian model averaging regression algorithm that incorporates external information from diverse data types to infer regulatory networks from the time-series and genetics data. Our algorithm is capable of generating feedback loops. We show that our inferred network recovers existing and novel regulatory relationships. Following network construction, we generate independent microarray data on selected deletion mutants to prospectively test network predictions. We demonstrate the potential of our network to discover de novo transcription-factor binding sites. Applying our construction method to previously published data demonstrates that our method is competitive with leading network construction algorithms in the literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

H∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks

Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...

متن کامل

Identification of miR-24 and miR-137 as novel candidate multiple sclerosis miRNA biomarkers using multi-staged data analysis protocol

Many studies have investigated misregulation of miRNAs relevant to multiple sclerosis (MS) pathogenesis. Abnormal miRNAs can be used both as candidate biomarker for MS diagnosis and understanding the disease miRNA-mRNA regulatory network. In this comprehensive study, misregulated miRNAs related to MS were collected from existing literature, databases and via in silico prediction. A multi-staged...

متن کامل

Construction of Correlation Networks with Explicit Time-Slices Using Time-Lagged, Variable Interval Standard and Partial Correlation Coefficients

The construction of gene regulatory models from microarray time-series data has received much attention. Here we propose a method that extends standard correlation networks to incorporate explicit timeslices. The method is applied to a time-series dataset of a study on gene expression in the developmental phase of zebrafish. Results show that the method is able to distinguish real relations bet...

متن کامل

Using Additive Expression Programming for Gene Regulatory Network Inference

Gene regulatory networks depict the interactions among genes in the cell and construction of networks is important in uncovering the underlying biological process of living organisms. In this paper, a non-linear differential equation model is used for gene regulatory network reconstruction and time-series prediction. A new model, called additive expression tree (AET) model is proposed to encode...

متن کامل

Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method

MOTIVATION A variety of biological cellular processes are achieved through a variety of extracellular regulators, signal transduction, protein-protein interactions and differential gene expression. Understanding of the mechanisms underlying these processes requires detailed molecular description of the protein and gene networks involved. To better understand these molecular networks, we propose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 48  شماره 

صفحات  -

تاریخ انتشار 2011